skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shiri, Yaseman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Considerable recent research interest has focused on the possibility of using metasurfaces for manipulation of terahertz wavefronts. For example, metasurfaces allow a beam to be targeted in any desired direction using strategically placed meta-elements. With rapid prototyping techniques, metasurfaces can be fabricated quickly and at a low cost. These techniques also permit the fabrication of metasurfaces on flexible substrates which can be bent easily. This opens the possibility of employing such devices as conformable arrays on non-flat surfaces. To explore this idea, we experimentally and numerically analyze the performance of a terahertz metasurface printed on paper, as a function of its radius of curvature. We observe that when the metasurface is bent, the direction of the refracted beam is minimally impacted and the performance of the metasurface remains very similar to when it is flat. This conclusion will simplify the design and modeling criteria for conformable metasurfaces. 
    more » « less
  2. We demonstrate a bar code sensing system for the THz region using leaky parallel plate waveguide and an off-axis parabolic mirror. The bars of the bar code are made from metal with air as gaps between them. We use up to 6 bars in the barcode system which can store up to 64 bits. Because the system employs coherent detection, we can further increase the bit density by adding Teflon strips to the barcode, encoding information in both amplitude and phase delay. These bar codes can be manufactured easily and inexpensively, offering a versatile alternative to RFID tags. 
    more » « less